Giải các bất phương trình bậc hai sau: a) x^2 - 10.x + 24 >= 0; b) -4.x^2 + 28.x - 49 <= 0
Bài 3 trang 21 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:
Bài 3 trang 21 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:
a)
Tam thức bậc hai f ( x ) = x2 – 10x + 24 có ∆ = (– 10)2 – 4.1.24 = 4 > 0 suy ra f(x) có hai nghiệm phân biệt x1 = 6 và x2 = 4 và a = 1 > 0 nên f ( x ) > 0 với x ≤ 4 hoặc x ≥ 6.
Vậy bất phương trình đã cho có tập nghiệm S = (– ∞; 4] ∪ [6; +∞)
b)
Tam thức bậc hai f ( x ) = –4x2 + 28x – 49 có ∆ = 282 – 4.(– 4).(– 49) = 0 suy ra f(x) có một nghiệm x = , a = –4 < 0 nên f ( x ) ≤ 0 với mọi x ∈ ℝ.
Vậy bất phương trình đã cho có tập nghiệm S = ℝ.
c)
Tam thức bậc hai f ( x ) = x2 – 5x + 1 có ∆ = (–5)2 – 4.1.1 = 21 suy ra f(x) có hai nghiệm phân biệt x1 = và x2 = , a = 1 > 0 nên f ( x ) > 0 với x < hoặc x > .
Vậy bất phương trình đã cho có tập nghiệm S =
d)
Tam thức bậc hai f ( x ) = 9x2 – 24x +16 có ∆ = (–24)2 – 4.9.16 = 0 suy ra f(x) có một nghiệm x = , a = 9 > 0 nên f ( x ) ≤ 0 khi x = .
Vậy bất phương trình đã cho có tập nghiệm S =
e)
Tam thức bậc hai f ( x ) = 15x2 – x – 2 có ∆ = (–1)2 – 4.15.( –2) = 121 suy ra f(x) có hai nghiệm phân biệt x1 = và x2 = , a = 15 > 0 nên f ( x ) < 0 với < x < .
Vậy bất phương trình đã cho có tập nghiệm S =
g)
Tam thức bậc hai f ( x ) = –x2 + 8x – 17 có ∆ = 82 – 4.( –1).( –17) = –4 < 0 , a = –1 < 0 nên f ( x ) âm với mọi x ∈ ℝ.
Vậy bất phương trình vô nghiệm.
h)
Tam thức bậc hai f ( x ) = –25x2 + 10x – 1 có ∆ = 102 – 4.( –25).( –1) = 0 suy ra f(x) có một nghiệm x = , a = –25 < 0 nên f ( x ) < 0 khi x ≠ .
Vậy bất phương trình đã cho có tập nghiệm S = ℝ \ .
i)
Tam thức bậc hai f ( x ) = 4x2 + 4x + 7 có ∆ = 42 – 4.4.7 = –96 < 0 , a = 4 > 0 nên f ( x ) dương với mọi x ∈ ℝ.
Vậy bất phương trình vô nghiệm.
Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Giải bất phương trình bậc hai một ẩn
Bài 3: Phương trình quy về phương trình bậc hai
Bài 1: Quy tắc cộng và quy tắc nhân