Với giá trị nào của a và b thì đa thức x^3 + ax^2 + 2x + b chia hết cho đa thức x^2 + x + 1

Đề bài: Với giá trị nào của a và b thì đa thức x3 + ax2 + 2x + b chia hết cho đa thức x2 + x + 1.

Trả lời

Hướng dẫn giải:

x3+ax2+2x+b=xx2+x+1+a1x2+x+1+x+ba1xa1=x+a1x2+x+1+x2a+ba+1

Thấy rằng bậc của x(2 – a) + (b – a + 1) nhỏ hơn bậc của x2  + x + 1 nên nó là số dư của x3 + ax2 + 2x + b chia cho x2 + x + 1

Như vậy để thỏa mãn yêu cầu để bài thì: x(2 – a) + (b – a + 1) = 0

Hay a = 2; b = 1

Vây (a; b) = (2; 1).

Câu hỏi cùng chủ đề

Xem tất cả