Câu hỏi:

18/12/2023 132

Viết phương trình đường thẳng hypebol (H), biết (H) đi qua điểm M(32; −4) và có 1 tiêu điểm là F2(5; 0)

A. x29y216=1

Đáp án chính xác

B. x216y29=1

C. x216y225=1

D. x225y216=1

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Phương trình chính tắc của (H) có dạng: x2a2y2b2=1 trong đó a, b > 0

Vì (H) có một tiêu điểm là F2(5; 0) nên ta có : c = 5 a2 + b2 = c2 = 25

  a2 = 25 – b2

Vì (H) đi qua điểm M(32; −4) nên ta có: 322a242b2=1  18a216b2=1         (1)

Đặt t = b2 (t > 0) a2 = 25 – t . Thay vào (1) ta được:1825t16t=1 (t 25)

                                                                         18t – 16(25 – t) = (25 – t)t

                                                                         t2 + 9t – 400 = 0  t=16t=25

Với điều kiện t > 0 thì t = - 25 không thoả mãn

Với t = 16 thì b2 = 16 và a2 = 25 – 16 = 9

Vậy phương trình đường thẳng hypebol (H) là: x29y216=1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho parabol (P): y2 = 4x và 2 điểm A(0; -4) , B(-6; 4).Tìm điểm C thuộc (P) sao cho tam giác ABC vuông tại A

Xem đáp án » 18/12/2023 114

Câu 2:

Cho elip (E) : 9x2 + 16y2 = 144 . Với M là điểm thuộc elip biết F1MF2^= 60°. Tính MF1.MF2

Xem đáp án » 18/12/2023 89

Câu 3:

Cho elip (E) : x2100+y236=1. Qua tiêu điểm F1 của (E) dựng đường thẳng song song với Oy và cắt (E) tại hai điểm M và N. Tính độ dài MN

Xem đáp án » 18/12/2023 79

Câu 4:

Cho phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng ∆: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng 

Xem đáp án » 18/12/2023 73

Câu hỏi mới nhất

Xem thêm »
Xem thêm »