Trắc nghiệm Toán 10 KNTT Bài 22. Ba đường conic (Vận dụng) có đáp án
-
275 lượt thi
-
5 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Cho phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng ∆: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của (P) có dạng: y2 = 2px (p > 0)
Vì (P) có đường chuẩn ∆ : x + 4 = 0 hay x = −4 ⇒ ⇔ p = 8
Do đó phương trình chính tắc của (P) là: y2 = 16x
Gọi M(x0; y0). Vì M thuộc (P) nên ta có:
d(M; ∆) = MF = 5
⇔
⇔
⇔
⇔
Với x0 = – 9 ta có: y02 = 16 .(– 9) = – 144 (vô lí)
Với x0 = 1 ta có: y02 = 16.1 = 16 ⇔
Vậy M (1; 4) hoặc M(1; – 4).
Câu 2:
Viết phương trình đường thẳng hypebol (H), biết (H) đi qua điểm M(3; −4) và có 1 tiêu điểm là F2(5; 0)
Hướng dẫn giải
Đáp án đúng là: A
Phương trình chính tắc của (H) có dạng: trong đó a, b > 0
Vì (H) có một tiêu điểm là F2(5; 0) nên ta có : c = 5 ⇒ a2 + b2 = c2 = 25
⇔ a2 = 25 – b2
Vì (H) đi qua điểm M(3; −4) nên ta có: ⇔ (1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t . Thay vào (1) ta được: (t ≠ 25)
⇔ 18t – 16(25 – t) = (25 – t)t
⇔ t2 + 9t – 400 = 0 ⇒
Với điều kiện t > 0 thì t = - 25 không thoả mãn
Với t = 16 thì b2 = 16 và a2 = 25 – 16 = 9
Vậy phương trình đường thẳng hypebol (H) là: .
Câu 3:
Cho parabol (P): y2 = 4x và 2 điểm A(0; -4) , B(-6; 4).Tìm điểm C thuộc (P) sao cho tam giác ABC vuông tại A
Hướng dẫn giải
Đáp án đúng là: A
Vì điểm C thuộc (P) nên C
Ta có: ;
Theo giả thiết tam giác ABC vuông tại A khi và chỉ khi = 0
⇔
⇔
⇔
Với c = 8 thì C(16; 8)
Với c = thì C
Vậy điểm C cần tìm có toạ độ là: C(16; 8) hoặc C.
Câu 4:
Cho elip (E) : . Qua tiêu điểm F1 của (E) dựng đường thẳng song song với Oy và cắt (E) tại hai điểm M và N. Tính độ dài MN
Hướng dẫn giải
Đáp án đúng là: B
Ta có: ⇒ a2 = 100 và b2 = 36 . Do đó: c =
Khi đó, tiêu điểm F1 (−8; 0)
⇒ Đường thẳng d // Oy và đi qua F1 (−8; 0) là x = −8
Giao điểm của d và (E) là nghiệm của hệ phương trình:
⇔ ⇒
Vậy toạ độ hai điểm M và N lần lượt là: M và N
⇒ MN = .
Câu 5:
Cho elip (E) : 9x2 + 16y2 = 144 . Với M là điểm thuộc elip biết = 60°. Tính MF1.MF2
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 9x2 + 16y2 = 144 ⇔ . Khi đó: a = 4; b = 3; c = .
⇒ F1 (−;0); F2 (; 0); F1F2 = 2c = 2; MF1 + MF2 = 8
Áp dụng định lí cosin trong tam giác MF1F2 ta có:
F1F22 = MF12 + MF22 − 2MF1. MF2. cos
⇔ 28 = MF12 + MF22 − 2MF1. MF2. cos60º
⇔ 28 = MF12 + MF22 − MF1. MF2
⇔ MF12 + MF22 + 2MF1. MF2 − 3MF1. MF2 = 28
⇔ (MF1 + MF2)2 − 3MF1. MF2 = 28
⇔ 64 − 3MF1. MF2 = 28
⇔ MF1. MF2 = 12.