Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên

Câu 39: Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?

Trả lời

Gọi số cần tìm là d¯

+) TH1: e = 0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

Ba chỗ còn lại có 4 × 3 × 2 = 24 cách

Suy ra có 4 × 24 = 96 cách

+) TH2: e = 5; a = 2

a, e có 1 cách chọn

b có 4 cách chọn

c có 3 cách chọn

d có 2 cách chọn

Suy ra có 4 × 3 × 2 = 24 cách

+) TH3: e = 5; a  2

e có 1 cách chọn

a có 3 cách chon

Số 2 có 3 cách

Hai số còn lại có 3 × 2 = 6 cách

Suy ra có 3 × 3 × 6 = 54 cách

Vậy có tất cá 96 + 24 + 54 = 174 số thỏa mãn yêu cầu đề bài.

 

Câu hỏi cùng chủ đề

Xem tất cả