Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 5 chữ số khác nhau mà số

Câu 36: Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 5 chữ số khác nhau mà số đó nhất thiết có mặt các chữ số 1, 2, 5?

Trả lời

Số có 5 chữ số khác nhau mà có 1, 2, 5 thì 2 chữ số còn lại lấy từ 4 chữ số 0, 3, 4, 6.

Lấy 2 số trong 4 số có 24  cách, trong đó có 3 trường hợp gồm 0; 3, 0; 4, 0; 6

Ba trường hợp trên giống nhau và có 3.4.4.3.2.1 = 288 số.

Ba trường hợp còn lại ging nhau và có 3.5! = 360 số.

 

Vậy có tất cả 288 + 360 = 648 số cần tìm.

Câu hỏi cùng chủ đề

Xem tất cả