Câu hỏi:
03/04/2024 48
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \[3x - y - 3 = 0\]. Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] và phép tịnh tiến theo vectơ \[\overrightarrow v \left( {1;3} \right)\] biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’.
A. \[3x - y + 3 = 0\]
B. \[3x + y + 3 = 0\]
C. \[3x + y - 3 = 0\]
D. \[3x - y - 3 = 0\]
Trả lời:
Đáp án D
Phương pháp
Sử dụng biểu thức tọa độ của phép vị tự tâm \[I\left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\]
Sử dụng biểu thức tọa độ của phép tịnh tiến theo véctơ \[\overrightarrow v = \left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\].
Cách giải
Gọi \[M\left( {x;y} \right) \in d:3x - y - 3 = 0\]
Gọi \[M'\left( {x';y'} \right)\] là ảnh của \[M\left( {x;y} \right)\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\].
Khi đó ta có \[\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\] nên \[M\left( { - x' + 4; - y' + 6} \right)\]
Mà \[M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\] nên ta có \[\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) = 0 \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0 \Leftrightarrow 3x' - y' - 3 = 0\end{array}\]
Do đó, ảnh của đường thẳng \[d:3x - y - 3 = 0\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] là đường thẳng \[d':3x - y - 3 = 0\] .
Ta tìm ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\].
Gọi \[N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\] và \[N'\left( {{x_2};{y_2}} \right)\] là ảnh của qua \[{T_{\overrightarrow v }}\].
Khi đó ta có: \[\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\].
Thay tọa độ \[N\left( {{x_2} - 1;{y_2} - 3} \right)\] vào phương trình đường thẳng \[d':3x - y - 3 = 0\] ta được: \[3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0 \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\]
Vậy ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\] là đường thẳng \[{d_1}:3x - y - 3 = 0\].
Hay đường thẳng cần tìm là: \[{d_1}:3x - y - 3 = 0\].
Đáp án D
Phương pháp
Sử dụng biểu thức tọa độ của phép vị tự tâm \[I\left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\]
Sử dụng biểu thức tọa độ của phép tịnh tiến theo véctơ \[\overrightarrow v = \left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\].
Cách giải
Gọi \[M\left( {x;y} \right) \in d:3x - y - 3 = 0\]
Gọi \[M'\left( {x';y'} \right)\] là ảnh của \[M\left( {x;y} \right)\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\].
Khi đó ta có \[\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\] nên \[M\left( { - x' + 4; - y' + 6} \right)\]
Mà \[M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\] nên ta có \[\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) = 0 \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0 \Leftrightarrow 3x' - y' - 3 = 0\end{array}\]
Do đó, ảnh của đường thẳng \[d:3x - y - 3 = 0\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] là đường thẳng \[d':3x - y - 3 = 0\] .
Ta tìm ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\].
Gọi \[N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\] và \[N'\left( {{x_2};{y_2}} \right)\] là ảnh của qua \[{T_{\overrightarrow v }}\].
Khi đó ta có: \[\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\].
Thay tọa độ \[N\left( {{x_2} - 1;{y_2} - 3} \right)\] vào phương trình đường thẳng \[d':3x - y - 3 = 0\] ta được: \[3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0 \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\]
Vậy ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\] là đường thẳng \[{d_1}:3x - y - 3 = 0\].
Hay đường thẳng cần tìm là: \[{d_1}:3x - y - 3 = 0\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?
Câu 5:
Đề kiểm tra một tiết môn toán của lớp 12A có 25 câu trắc nghiệm, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án đúng. Một học sinh không học bài nên làm bằng cách chọn ngẫu nhiên mỗi câu một phương án. Tính xác suất để học sinh đó làm đúng đáp án 15 câu.
Câu 6:
Khai triển đa thức \[P\left( x \right) = {\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{10}} = {a_0} + {a_1}x + ... + {a_9}{x^9} + {a_{10}}{x^{10}}\]. Tìm hệ số \[{a_k}\left( {0 \le k \le 10;k \in \mathbb{N}} \right)\] lớn nhất trong khai triển trên.
Câu 7:
Tính giá trị của tổng \[T = C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2018}\].
Câu 8:
Cho hai đường tròn bằng nhau \[\left( {I;R} \right)\] và \[\left( {I';R'} \right)\] với tâm I và I’ phân biệt. Có bao nhiêu phép vị tự biến \[\left( {I;R} \right)\] thành \[\left( {I';R'} \right)\]?
Câu 9:
Có bao nhiêu số tự nhiên có sáu chữ số sao cho trong mỗi số đó chữ số sau lớn hơn chữ số trước?
Câu 10:
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Câu 12:
Cho tứ diện ABCD có \[AB = BC = AC = CD = DB = a,AD = \frac{{a\sqrt 3 }}{2}\]. Gọi M là trung điểm của AB, điểm O là tâm đường tròn ngoại tiếp tam giác BCD. Đường thẳng AO cắt mặt phẳng \[\left( {MCD} \right)\] tại G. Tính diện tích tam giác GAD.
Cho tứ diện ABCD có \[AB = BC = AC = CD = DB = a,AD = \frac{{a\sqrt 3 }}{2}\]. Gọi M là trung điểm của AB, điểm O là tâm đường tròn ngoại tiếp tam giác BCD. Đường thẳng AO cắt mặt phẳng \[\left( {MCD} \right)\] tại G. Tính diện tích tam giác GAD.