Câu hỏi:

03/04/2024 50

Cho tứ diện ABCD\[AB = BC = AC = CD = DB = a,AD = \frac{{a\sqrt 3 }}{2}\]. Gọi M là trung điểm của AB, điểm O là tâm đường tròn ngoại tiếp tam giác BCD. Đường thẳng AO cắt mặt phẳng \[\left( {MCD} \right)\] tại G. Tính diện tích tam giác GAD.

A. \[\frac{{\sqrt 3 {a^2}}}{{32}}\].

B. \[\frac{{3\sqrt 3 {a^2}}}{{32}}\].

Đáp án chính xác

C. \[\frac{{3\sqrt 3 {a^2}}}{{16}}\].

D. \[\frac{{\sqrt 3 {a^2}}}{{16}}\].

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp

Tính độ dài các đoạn GA, GD, AD rồi nhận xét tính chất tam giác GAD.

Cách giải

Media VietJack

Tam giác ACD\[AC = CD = a,AD = \frac{{a\sqrt 3 }}{2}\] nên \[A{E^2} = \frac{{A{C^2} + A{D^2}}}{2} - \frac{{C{D^2}}}{4} = \frac{{{a^2} + \frac{{3{a^2}}}{4}}}{2} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}\].

Tam giác BCD đều \[ \Rightarrow BE = \frac{{a\sqrt 3 }}{2}\].

Tam giác ABEEM là đường trung tuyến của tam giác AEB nên:

\[E{M^2} = \frac{{E{A^2} + E{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{\frac{{5{a^2}}}{8} + \frac{{3{a^2}}}{4}}}{2} - \frac{{{a^2}}}{4} = \frac{{7{a^2}}}{{16}}\].

Xét tam giác BME và bộ ba điểm A, G, O thẳng hàng có: \[\frac{{AM}}{{AB}}.\frac{{OB}}{{OE}}.\frac{{GE}}{{GM}} = 1 \Rightarrow \frac{1}{2}.2.\frac{{GE}}{{GM}} = 1 \Leftrightarrow \frac{{GE}}{{GM}} = 1\] hay G là trung điểm của ME.

Xét tam giác ABD DM là trung tuyến của \[\Delta ABD\] nên \[D{M^2} = \frac{{D{A^2} + B{D^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{5{a^2}}}{8}\].

Tam giác DME có trung tuyến DG nên \[D{G^2} = \frac{{D{E^2} + D{M^2}}}{2} - \frac{{M{E^2}}}{4} = \frac{{\frac{{{a^2}}}{4} + \frac{{5{a^2}}}{8}}}{2} - \frac{{7{a^2}}}{{64}} = \frac{{21{a^2}}}{{64}}\].

Lại có: \[\begin{array}{l}\cos AEM = \frac{{A{E^2} + E{M^2} - A{M^2}}}{{2.AE.EM}} = \frac{{\frac{{5{a^2}}}{8} + \frac{{7{a^2}}}{{16}} - \frac{{{a^2}}}{4}}}{{2.\sqrt {\frac{{5{a^2}}}{8}.\frac{{7{a^2}}}{{16}}} }} = \frac{{13}}{{2\sqrt {70} }}\\ \Rightarrow A{G^2} = A{E^2} + E{G^2} - 2AE.EG.\cos AEG = \frac{{5{a^2}}}{8} + \frac{{7{a^2}}}{{64}} - 2.\sqrt {\frac{{5{a^2}}}{8}.\frac{{7{a^2}}}{{64}}} .\frac{{13}}{{2\sqrt {70} }} = \frac{{21{a^2}}}{{64}}\end{array}\]

Tam giác ADG\[A{G^2} = \frac{{21{a^2}}}{{64}},A{D^2} = \frac{{3{a^2}}}{4},D{G^2} = \frac{{21{a^2}}}{{64}}\].

Do đó \[\Delta GAD\] cân tại G.

Gọi H là trung điểm của AD thì \[AH = \frac{{a\sqrt 3 }}{4},G{H^2} = G{A^2} - A{H^2} = \frac{{21{a^2}}}{{64}} - \frac{{3{a^2}}}{{16}} = \frac{{9{a^2}}}{{64}} \Rightarrow GH = \frac{{3a}}{8}\].

Diện tích tam giác \[{S_{GAD}} = \frac{1}{2}.GH.AD = \frac{1}{2}.\frac{{3a}}{8}.\frac{{a\sqrt 3 }}{2} = \frac{{3{a^2}\sqrt 3 }}{{32}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số có hai chữ số mà tất cả các chữ số đều là số lẻ?

Xem đáp án » 03/04/2024 70

Câu 2:

Cho các hình vẽ sau:

Media VietJack

Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?

Xem đáp án » 03/04/2024 69

Câu 3:

Giải phương trình \[\cot x = - 1\].

Xem đáp án » 03/04/2024 64

Câu 4:

Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 03/04/2024 60

Câu 5:

Đề kiểm tra một tiết môn toán của lớp 12A có 25 câu trắc nghiệm, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án đúng. Một học sinh không học bài nên làm bằng cách chọn ngẫu nhiên mỗi câu một phương án. Tính xác suất để học sinh đó làm đúng đáp án 15 câu.

Xem đáp án » 03/04/2024 57

Câu 6:

Khai triển đa thức \[P\left( x \right) = {\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{10}} = {a_0} + {a_1}x + ... + {a_9}{x^9} + {a_{10}}{x^{10}}\]. Tìm hệ số \[{a_k}\left( {0 \le k \le 10;k \in \mathbb{N}} \right)\] lớn nhất trong khai triển trên.

Xem đáp án » 03/04/2024 56

Câu 7:

Tính giá trị của tổng \[T = C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2018}\].

Xem đáp án » 03/04/2024 54

Câu 8:

Cho hai đường tròn bằng nhau \[\left( {I;R} \right)\]\[\left( {I';R'} \right)\] với tâm II’ phân biệt. Có bao nhiêu phép vị tự biến \[\left( {I;R} \right)\] thành \[\left( {I';R'} \right)\]?

Xem đáp án » 03/04/2024 54

Câu 9:

Có bao nhiêu số tự nhiên có sáu chữ số sao cho trong mỗi số đó chữ số sau lớn hơn chữ số trước?

Xem đáp án » 03/04/2024 53

Câu 10:

Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right)\].

b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].

Xem đáp án » 03/04/2024 53

Câu 11:

Tìm chu kì tuần hoàn của hàm số \[y = \sin x\].

Xem đáp án » 03/04/2024 50

Câu 12:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \[3x - y - 3 = 0\]. Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] và phép tịnh tiến theo vectơ \[\overrightarrow v \left( {1;3} \right)\] biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’.

Xem đáp án » 03/04/2024 47

Câu 13:

Tìm số nghiệm trong khoảng \[\left( { - \pi ;\pi } \right)\] của phương trình \[\sin x = \cos 2x\].

Xem đáp án » 03/04/2024 47

Câu 14:

b) (VDC) Tìm tất cả các giá trị thực của tham số m để phương trình sau có nghiệm: \[{\cos ^2}x + \sqrt {\cos x + m} = m\].

Xem đáp án » 03/04/2024 47

Câu 15:

Phương trình \[\sqrt 3 \sin x + \cos x = 1\] tương đương với phương trình nào sau đây?

Xem đáp án » 03/04/2024 45