Câu hỏi:
29/12/2023 149
Trong khai triển nhị thức (2a + 1)5 ba số hạng đầu là:
A. 32a5 + 40a4 + 10a3;
B. 80a5 + 80a4 + 40a3;
C. 32a5 + 80a4 + 40a3;
D. 32a5 + 80a4 + 80a3.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có khai triển
(2a + 1)5 = \(C_5^0\)(2a)5(1)0 + \(C_5^1\)(2a)4(1)1 + \(C_5^2\)(2a)3(1)2 + \(C_5^3\)(2a)2(1)3 + \(C_5^4\)(2a)(1)4 + \(C_5^5\)(2a)0(1)5 = 32a5 + 80a4 + 80a3 + 40a2 + 10a + 1
Vậy 3 số hạng đầu của khai triển là 32a5 + 80a4 + 80a3
Hướng dẫn giải
Đáp án đúng là: D
Ta có khai triển
(2a + 1)5 = \(C_5^0\)(2a)5(1)0 + \(C_5^1\)(2a)4(1)1 + \(C_5^2\)(2a)3(1)2 + \(C_5^3\)(2a)2(1)3 + \(C_5^4\)(2a)(1)4 + \(C_5^5\)(2a)0(1)5 = 32a5 + 80a4 + 80a3 + 40a2 + 10a + 1
Vậy 3 số hạng đầu của khai triển là 32a5 + 80a4 + 80a3
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Với n là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 10\), hệ số của x5 trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{x}} \right)^n}\) bằng
Câu 4:
Trong khai triển nhị thức (a + 2)n - 5 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
Câu 7:
Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
Câu 9:
Với n là số nguyên dương thỏa mãn \(3C_{n + 1}^3 + A_n^2 = 14\left( {n - 1} \right)\). Trong khai triển biểu thức (x3 + 2y2)n, gọi Tk là số hạng mà tổng số mũ của x và y của số hạng đó bằng 11. Hệ số của Tk là
Câu 12:
Cho số tự nhiên n thỏa mãn \[A_n^2 + 2C_n^n = 22\]. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng
Câu 13:
Tính giá trị biểu thức \(T = C_4^0 + \frac{1}{2}C_4^1 + \frac{1}{4}C_4^2 + \frac{1}{8}C_4^3 + \frac{1}{{16}}C_4^4\)