Trong Hình 94, đường thẳng CD là đường trung trực của đoạn thẳng AB. Chứng minh góc CAD = góc CBD

Bài 1 trang 103 Toán 7 Tập 2Trong Hình 94, đường thẳng CD là đường trung trực của đoạn thẳng AB. Chứng minh CAD^=CBD^.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Trả lời

GT

CD là đường trung trực của đoạn thẳng AB

KL

CAD^=CBD^

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Gọi M là giao điểm của CD và AB. Khi đó M là trung điểm của AB.

CD là đường trung trực của đoạn thẳng AB nên:

+) C thuộc đường trung trực của đoạn thẳng AB do đó CA = CB.

+) D thuộc đường trung trực của đoạn thẳng AB do đó DA = DB.

Xét CAD và CBD có:

CD là cạnh chung,

CA = AB (chứng minh trên),

DA = DB (chứng minh trên)

Do đó CAD = CBD (c.c.c)

Do đó CAD^=CBD^ (hai góc tương ứng)

Vậy CAD^=CBD^.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 7: Tam giác cân

Bài 8: Đường vuông góc và đường xiên

Bài 9: Đường trung trực của một đoạn thẳng

Bài 10: Tính chất ba đường trung tuyến của tam giác

Bài 11: Tính chất ba đường phân giác của tam giác

Bài 12: Tính chất ba đường trung trực của tam giác

Câu hỏi cùng chủ đề

Xem tất cả