Trong các dãy số (un) dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân? Nếu

Bài 2.43 trang 42 SBT Toán 11 Tập 1: Trong các dãy số (un) dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân? Nếu dãy số là cấp số cộng hoặc cấp số nhân, hãy xác định công sai hoặc công bội của nó.

a) u1 = 2, un + 1 = un + n;

b) un = 6n + 3;

c) u1 = 1, un + 1 = n ∙ un;

d) u= 3 . 5n.

Trả lời

a) Từ hệ thức truy hồi ta có u1 = 2; u2 = u1 + 1 = 2 + 1 = 3; u3 = u2 + 2 = 3 + 2 = 5.

Ta có 3 – 2 = 1; 5 – 3 = 2 nên u2 – u1 ≠ u3 – u2 và 3253 nên u2u1u3u2.

Do vậy, dãy số đã cho không là cấp số cộng và cũng không là cấp số nhân.

b) Từ un = 6n + 3, suy ra un + 1 = 6(n + 1) + 3 = 6n + 9.

Ta có un + 1 = (6n + 9) – (6n + 3) = 6 không đổi với mọi n ≥ 1.

Vậy dãy số đã cho là cấp số cộng với công sai d = 6.

c) Từ hệ thức truy hồi ta có u1 = 1; u2 = 1; u3 = 2 . u2 = 2.

Từ đó suy ra u2 – u1 ≠ u3 – u2 và u2u1u3u2.

Vậy dãy số đã cho không là cấp số cộng và cũng không là cấp số nhân.

d) Từ u= 3 . 5n suy ra un + 1 = 3 . 5n + 1 = 3 . 5 . 5n.

Ta có un+1un=3.5.5n3.5n=5 không đổi với mọi n ≥ 1.

Vậy dãy số đã cho là cấp số nhân với công bội q = 5.

Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Câu hỏi cùng chủ đề

Xem tất cả