Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số

Bài 2.48 trang 43 SBT Toán 11 Tập 1: Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân thì ba số ấy bằng nhau.

Trả lời

Gọi x, y lần lượt là số thứ nhất và số thứ ba trong ba số đó. 

Vì ba số theo thứ tự đó lập thành một cấp số cộng nên số thứ hai là x+y2

Khi đó, ba số cần tìm có dạng: x, x+y2, y.

Vì ba số này lập thành một cấp số nhân nên ta có

xy=x+y22⇔ 4xy = x2 + 2xy + y2 ⇔ x2 – 2xy + y2 = 0 ⇔ (x − y)2 = 0, tức là x = y.

Suy ra x+y2=x+x2=2x2=x.

Vậy ba số đó bằng nhau.

Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Câu hỏi cùng chủ đề

Xem tất cả