Trên tập hợp số phức, xét phương trình z^2-2(m+1)z+m^2=0 ( m là số thực). Có bao nhiêu giá trị của m để phương trình đó có

Trên tập hợp số phức, xét phương trình z22m+1z+m2=0 (m là số thực). Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1,z2 thỏa mãn z1+z2=2?

A. 1

B. 4

C. 2

D. 5

Trả lời

Chọn C

Ta có: Δ'=2m+2

TH1: Δ'<0m<1.

Phương trình có hai nghiệm phức, khi đó: z1=z2=ca=m2.

Suy ra: 2m2=2m=1m=1 (l).

TH2: Δ'>0m>1.

a.c=m20 nên phương trình có hai nghiệm phân biệt z1.z20

 hoặc z1.z20.

Suy ra: z1+z2=2z1+z2=22m+2=2m=2(l)m=0.

Vậy có 2  giá trị của m thỏa yêu cầu bài toán.

Câu hỏi cùng chủ đề

Xem tất cả