Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)+xf'(x)=4x^3+4x+2, với mọi x thuộc R . Diện tích hình phẳng giới hạn

Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãnf(x)+xf'(x)=4x3+4x+2,x. Diện tích hình phẳng giới hạn bởi các đường y=f(x) y=f'(x) bằng

A. 52

B. 43

C. 12

D. 14

Trả lời

Chọn C

Ta có: f(x)+x.f'(x)=4x3+4x+2(x)'f(x)+x.f'(x)=4x3+4x+2

[x.f(x)]'=4x3+4x+2x.f(x)=x4+2x2+2x+Cf(x)=x4+2x2+2x+Cx

Vì do fx liên tục trên R nên C=0. Do đó f(x)=x3+2x+2f'(x)=3x2+2

Xét phương trình hoành độ giao điểm của y=f(x)y=f'(x), ta có:

x3+2x+2=3x2+2x=0x=1x=2. Vậy diện tích phẳng giới hạn bởi các đường y=f(x)y=f'(x)là: S=02f(x)f'(x)dx=12

Câu hỏi cùng chủ đề

Xem tất cả