Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt
32
03/06/2024
Trên các cạnh AB, BC, CA của ∆ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n, biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.
Trả lời
Nhận xét: Mỗi tam giác được lập thành do một cách chọn 3 điểm sao cho 3 điểm đó không thẳng hàng tức là không cùng nằm trên một cạnh của ∆ABC.
Chọn ngẫu nhiên 3 điểm từ n + 6 điểm đã cho có: \(C_{n + 6}^3\) cách.
Chọn 3 điểm chỉ nằm trên đúng 1 cạnh của ∆ABC có: \(C_4^3 + C_n^3\) (cách).
Số tam giác lập thành là: \(C_{n + 6}^3 - \left( {C_4^3 + C_n^3} \right) = 247\)
\( \Leftrightarrow \frac{{\left( {n + 6} \right)!}}{{3!.\left( {n + 3} \right)!}} - \left( {4 + \frac{{n!}}{{3!.\left( {n - 3} \right)!}}} \right) = 247\)\( \Leftrightarrow \frac{{\left( {n + 6} \right)\left( {n + 5} \right)\left( {n + 4} \right)}}{6} - \left( {4 + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6}} \right) = 247\)
\( \Leftrightarrow \left( {n + 6} \right)\left( {n + 5} \right)\left( {n + 4} \right) - n\left( {n - 1} \right)\left( {n - 2} \right) = 1506\)
\( \Leftrightarrow 18{n^2} + 72n - 1386 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = - 11\left( L \right)}\\{n = 7\left( {TM} \right)}\end{array}} \right.\)
Vậy n = 7.