Tìm x, y biết x : y : z = 3 : 8 : 5 và 3x + y - 2z = 14

Tìm x, y biết x : y : z = 3 : 8 : 5 và 3x + y  2z = 14.

Trả lời

Ta có x : y : z = 3 : 8 : 5

Suy ra \(\frac{x}{3} = \frac{y}{8} = \frac{z}{5}\)

Hay \(\frac{{3x}}{9} = \frac{y}{8} = \frac{{2z}}{{10}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{{3x}}{9} = \frac{y}{8} = \frac{{2z}}{{10}} = \frac{{3{\rm{x + y}} - {\rm{2z}}}}{{9 + 8 - 10}} = \frac{{14}}{7} = 2\)

Suy ra \(\left\{ \begin{array}{l}\frac{{3{\rm{x}}}}{9} = 2\\\frac{y}{8} = 2\\\frac{{2{\rm{z}}}}{{10}} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 16\\z = 10\end{array} \right.\)

Vậy x = 6, y = 16, z = 10.

Câu hỏi cùng chủ đề

Xem tất cả