Tìm x, y > 0 thỏa mãn x^3 + y^3 = 3xy – 1
Câu 21: Tìm x, y > 0 thỏa mãn x3 + y3 = 3xy – 1.
Câu 21: Tìm x, y > 0 thỏa mãn x3 + y3 = 3xy – 1.
x3 + y3 = 3xy – 1
⇔ x3 + y3 – 3xy + 1 = 0
⇔ (x+y)3 – 3xy(x+y) – 3xy + 1 = 0
⇔ (x+y+1)(x2 + 2xy + y2 – x – y + 1 – 3xy) = 0
Suy ra:
x + y + 1 = 0
x^2 + 2xy + y^2 - x - y + 1 - 3xy = 0
Vì x, y > 0 nên x + y + 1 > 0
Xét x2 + 2xy + y2 – x – y + 1 – 3xy = 0
⇔ 2 (x2 + 2xy + y2 – x – y + 1 – 3xy) = 0
⇔ (x – y)2 + (x2 – 2x + 1) + (y2 – 2y + 1) = 0
⇔ (x – y)2 + (x – 1)2 + (y – 1)2 = 0
Suy ra:
x - y = 0
x - 1 = 0
y - 1 = 0
hay x = y =1.
Vậy x = y = 1.