Tìm x, biết: cos^2 x - 3sinx.cosx - 2sin^2 x - 1 = 0

Tìm x, biết: cos2x – 3sinx.cosx – 2sin2x – 1 = 0.

Trả lời

cos2x – 3sinx.cosx – 2sin2x – 1 = 0

\( \Leftrightarrow \)cos2x – 3sinx.cosx – 2sin2x – sin2x – cos2x = 0

\( \Leftrightarrow \)−3sinx.cosx – 3sin2x = 0

\( \Leftrightarrow \)3sinx(cosx – sinx) = 0

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x - \sin x = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\\sin x = \sin \left( {\frac{\pi }{2} - x} \right)\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\\left[ \begin{array}{l}x = \frac{\pi }{2} - x + k2\pi \\x = \pi - \left( {\frac{\pi }{2} - x} \right) + k2\pi \end{array} \right.\end{array} \right.\) (k ℤ)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\2x = \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{4} + k\pi \end{array} \right.\) (k ℤ).

Vậy phương trình đã cho có hai họ nghiệm là: \(x = \frac{\pi }{4} + k\pi \) và x = kπ (k ℤ).

Câu hỏi cùng chủ đề

Xem tất cả