Tìm tất cả các giá trị thực của tham số m để hàm số chỉ có cực tiểu mà không có cực đại

Đề bài: Tìm tất cả các giá trị thực của tham số m để hàm số y=m+1x4mx2+32  chỉ có cực tiểu mà không có cực đại.

A. m < –1;

B. –1 < m < 0;

C. m > 1;

D. –1 ≤ m < 0.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: D

Trường hợp 1: m = –1.

Khi đó y=x2+3232>0,  x .

Cho y’ = 0 ⇔ 2x = 0 ⇔ x = 0.

Vì vậy hàm số không có cực đại, chỉ có cực tiểu x = 0 khi m = –1.

Trường hợp 2: m ≠ –1.

Hàm số đã cho không có cực đại m+1>0m0m>1m01<m0 .

Vậy –1 ≤ m ≤ 0 thỏa mãn yêu cầu bài toán.

Câu hỏi cùng chủ đề

Xem tất cả