Tìm số nguyên x, y biết xy – 2x – 3y = 1
Câu 4: Tìm số nguyên x, y biết xy – 2x – 3y = 1.
Câu 4: Tìm số nguyên x, y biết xy – 2x – 3y = 1.
Ta có: xy – 2x + 3y = 1.
(xy − 2x) + (3y − 6) = −5
x(y − 2) + 3(y − 2) = −5
(x + 3)(y − 2) = −5 = 1.(−5) = (−1).5
Vì x, y là số nguyên nên x + 3 và y – 2 cũng là số nguyên.
Do đó ta có bảng sau:
x + 3 |
1 |
–5 |
5 |
–1 |
y – 2 |
–5 |
1 |
–1 |
5 |
x |
–2 |
–8 |
2 |
–4 |
y |
–3 |
3 |
1 |
7 |
Vậy (x; y) ∈ {(−2; −3); (−8; 3); (2; 1); (−4; 7)}.