Tìm m để phương trình 2x^2 + (m + 1)x + m – 8 = 0 có nghiệm

Đề bài: Tìm m để phương trình 2x2 + (m + 1)x + m – 8 = 0 có nghiệm.

 

Trả lời

Hướng dẫn giải:

Phương trình 2x2 + (m + 1)x + m – 8 = 0 (1) là phương trình bậc hai một ẩn có:

a = 2, b = m + 1, c = m – 8 (m là tham số)

∆ = (m + 1)2 – 4 . 2 . (m – 8) = m2 + 2m + 1 – 8m + 64 = m2 – 6m + 65

Để phương trình (1) có nghiệm khi và chỉ khi ∆ ≥ 0  m2 – 6m + 65 ≥ 0

Xét tam thức bậc hai m2 – 6m + 65 có:

m = (– 6)2 – 4 . 1 . 65 = – 224 < 0 và hệ số am = 1 > 0

Sử dụng định lí về dấu của tam thức bậc hai, tam thức m2 – 6m + 65 mang dấu dương với mọi m  

Do đó m2 – 6m + 65 > 0 với mọi số thực m

Vậy phương trình đã cho luôn có nghiệm với mọi giá trị thực của m.

Câu hỏi cùng chủ đề

Xem tất cả