Tìm giá trị thực của tham số m khác 0 để hàm số y = mx^2 - 2mx - 3m - 2

Tìm giá trị thực của tham số m khác 0 để hàm số y = mx2 – 2mx – 3m – 2 có giá trị nhỏ nhất bằng – 10 trên ℝ.

Trả lời

Để hàm số đạt giá trị nhỏ nhất bằng – 10 trên ℝ thì

\(\left\{ \begin{array}{l}a = m > 0\\\frac{{ - \Delta }}{{4{\rm{a}}}} = - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\frac{{{{\left( { - 2m} \right)}^2} - 4.m.\left( { - 3m - 2} \right)}}{{4m}} = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\frac{{16{m^2} + 8m}}{{4m}} = 10\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\16{m^2} + 8m = 40m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\16{m^2} - 32m = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\16m\left( {m - 2} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\end{array} \right. \Leftrightarrow m = 2\)

Vậy m = 2.

Câu hỏi cùng chủ đề

Xem tất cả