Tìm giá trị nhỏ nhất của A = 2x^2 – 8x + 1
Câu 7: Tìm giá trị nhỏ nhất của A = 2x2 – 8x + 1.
Câu 7: Tìm giá trị nhỏ nhất của A = 2x2 – 8x + 1.
A = 2x2 – 8x + 1 = 2(x2 – 4x + 4) – 7 = 2(x – 2)2 – 7.
Ta có (x – 2)2 ≥ 0, ∀x ∈ ℝ.
⇔ 2(x – 2)2 ≥ 0, ∀x ∈ ℝ.
⇔ 2(x – 2)2 – 7 ≥ –7, ∀x ∈ ℝ.
⇔ A ≥ –7, ∀x ∈ ℝ.
Dấu “=” xảy ra ⇔ x – 2 = 0 ⇔ x = 2.
Vậy giá trị nhỏ nhất của A bằng –7 khi và chỉ khi x = 2.