Câu hỏi:
19/01/2024 66
Tập nghiệm của bất phương trình x2 – 1 > 0 là:
Tập nghiệm của bất phương trình x2 – 1 > 0 là:
A. (1; + ∞);
A. (1; + ∞);
B. (– 1; + ∞);
B. (– 1; + ∞);
C. (– 1; 1);
C. (– 1; 1);
D. (– ∞; – 1)\( \cup \)(1; + ∞) ;
D. (– ∞; – 1)\( \cup \)(1; + ∞) ;
Trả lời:
Đáp án đúng là: D
Tam thức bậc hai f(x) = x2 – 1 có ∆ = 4 > 0; hai nghiệm phân biệt là x = – 1; x = 1 và a = 1 > 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có x2 – 1 > 0 với mọi x \( \in \) (–∞; –1)\( \cup \)(1; +∞).
Đáp án đúng là: D
Tam thức bậc hai f(x) = x2 – 1 có ∆ = 4 > 0; hai nghiệm phân biệt là x = – 1; x = 1 và a = 1 > 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có x2 – 1 > 0 với mọi x \( \in \) (–∞; –1)\( \cup \)(1; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Câu 2:
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Câu 3:
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Câu 4:
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Câu 6:
Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Câu 7:
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Câu 9:
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
Câu 10:
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ