Câu hỏi:
19/01/2024 85
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
A. (– ∞; 0];
A. (– ∞; 0];
B. [8; + ∞);
B. [8; + ∞);
C. (– ∞; – 1];
C. (– ∞; – 1];
D. [6; + ∞).
D. [6; + ∞).
Trả lời:
Đáp án đúng là: D
Xét tam thức f(x) = x2 – 8x + 7 có ∆ = 36 > 0, hai nghiệm phân biệt là x = 1; x = 7 và a = 1 > 0
Ta có bảng xét dấu
x
–∞ 1 7 + ∞
f(x)
+ 0 – 0 +
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là S = (– ∞; 1]\( \cup \)[7; + ∞);
Vậy tập không phải là con của tập S là [6; + ∞).
Đáp án đúng là: D
Xét tam thức f(x) = x2 – 8x + 7 có ∆ = 36 > 0, hai nghiệm phân biệt là x = 1; x = 7 và a = 1 > 0
Ta có bảng xét dấu
x |
–∞ 1 7 + ∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là S = (– ∞; 1]\( \cup \)[7; + ∞);
Vậy tập không phải là con của tập S là [6; + ∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Câu 2:
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Câu 3:
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Câu 4:
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Câu 6:
Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Câu 7:
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Câu 9:
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ