Tam giác ABC có AB = AC, tia phân giác của góc A cắt BC tại D. a) Chứng minh rằng AD vuông góc với BC. b) Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng DA

Tam giác ABC có AB = AC, tia phân giác của \(\widehat A\) cắt BC tại D.

a) Chứng minh rằng AD vuông góc với BC.

b) Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng DA là tia phân giác của \(\widehat {EDF}\).

Trả lời

Lời giải

Media VietJack

a) Xét ∆ABD và ∆ACD, có:

AD là cạnh chung;

AB = AC (giả thiết);

\(\widehat {BAD} = \widehat {CAD}\) (do AD là tia phân giác của \(\widehat {BAC}\)).

Do đó ∆ABD = ∆ACD (c.g.c).

Suy ra \(\widehat {ADB} = \widehat {ADC}\) (cặp góc tương ứng).

\(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (kề bù).

Do đó \(\widehat {ADB} = \widehat {ADC} = 90^\circ \).

Vậy AD BC.

b) Xét ∆ADE và ∆ADF, có:

AD là cạnh chung;

\(\widehat {DAE} = \widehat {DAF}\) (do AD là tia phân giác của \(\widehat {BAC}\));

AE = AF (do AB = AC và BE = CF).

Do đó ∆ADE = ∆ADF (c.g.c).

Suy ra \(\widehat {ADE} = \widehat {ADF}\) (cặp góc tương ứng).

Vậy DA là tia phân giác của \(\widehat {EDF}\).

Câu hỏi cùng chủ đề

Xem tất cả