Sử dụng tính chất cơ bản của phân thức và quy tắc đổi dấu, viết phân thức

Sử dụng tính chất cơ bản của phân thức và quy tắc đổi dấu, viết phân thức \(\frac{{24{x^2}{y^2}}}{{3x{y^5}}}\) thành một phân thức có mẫu là –y3 rồi tìm đa thức B trong đẳng thức \(\frac{{24{x^2}{y^2}}}{{3x{y^5}}} = \frac{B}{{ - {y^3}}}\).

Trả lời

Với x ≠ 0, y ≠ 0. Ta có:

\(\frac{{24{x^2}{y^2}}}{{3x{y^5}}} = \frac{{24{x^2}{y^2}:3x{y^2}}}{{3x{y^5}:3x{y^2}}} = \frac{{8x}}{{{y^3}}}\).

Áp dụng quy tắc đổi dấu: \(\frac{{8x}}{{{y^3}}} = \frac{{ - 8x}}{{ - {y^3}}}\).

Do đó, \(\frac{{24{x^2}{y^2}}}{{3x{y^5}}} = \frac{{ - 8x}}{{ - {y^3}}} = \frac{B}{{ - {y^3}}}\).

Vậy B = –8x.

Câu hỏi cùng chủ đề

Xem tất cả