Quy đồng mẫu thức các phân thức sau 1 / (1 - x); 1 / (x + 1) và 1 / (x^2 + 1)
Quy đồng mẫu thức các phân thức sau:
\(\frac{1}{{1 - x}}\); \(\frac{1}{{x + 1}}\) và \(\frac{1}{{{x^2} + 1}}\).
Quy đồng mẫu thức các phân thức sau:
\(\frac{1}{{1 - x}}\); \(\frac{1}{{x + 1}}\) và \(\frac{1}{{{x^2} + 1}}\).
Mẫu thức chung: (1 – x)(x + 1)(x2 + 1) = (1 – x2)(x2 + 1) = 1 – x4.
Quy đồng mẫu thức ta có:
\(\frac{1}{{1 - x}} = \frac{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{1 - {x^4}}}\);
\(\frac{1}{{x + 1}} = \frac{{\left( {1 - x} \right)\left( {{x^2} + 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{\left( {1 - x} \right)\left( {{x^2} + 1} \right)}}{{1 - {x^4}}}\);
\(\frac{1}{{{x^2} + 1}} = \frac{{\left( {1 - x} \right)\left( {x + 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{\left( {1 - x} \right)\left( {x + 1} \right)}}{{1 - {x^4}}} = \frac{{1 - {x^2}}}{{1 - {x^4}}}\).