So sánh hai phân số. a) -3/8 và -5/24; b) -2/-5 và 3/-5; c) -3/-10 và -7/20; d) -5/4 và 23/-20

Toán lớp 6 trang 15 Bài 1: So sánh hai phân số.

a) 38 và 524;

b) 25 và 35;

c) 310 và 720;

d) 54 và 2320.

Trả lời

a) 38 và 524.

Mẫu số chung: 24.

Ta thực hiện: 38=3  .  38  .  3=924 và giữ nguyên phân số 524.

Vì −9 < −5 nên 924 < 524.

Do đó 38 < 524.

Vậy 38 < 524.

b) 25 và 35

Cách 1: (Đưa hai phân số về cùng mẫu dương rồi so sánh tử số của hai phân số đó).

Đưa hai phân số về cùng mẫu dương, ta được:

25=2535=35.

Vì −2 > −3  nên -25 > -35.

Vậy 25 > 35.

Cách 2: (So sánh hai phân số đó với 0 và áp dụng tính chất bắc cầu).

Ta có: 25 > 0 (phân số có tử số và mẫu số cùng dấu)

Và 35 < 0 (phân số có tử số và mẫu số trái dấu).

Áp dụng tính chất bắc cầu, ta suy ra: 25 > 35.

Vậy 25 > 35.

c) 310 và 720

Cách 1: (Đưa hai phân số về cùng mẫu dương rồi so sánh tử số của hai phân số đó).

Ta có: 310=310.

Mẫu số chung của hai phân số 310 và 720 là 20.

Ta thực hiện: 310=3  .  210  .  2=620 và 720.

Vì 6 > −7  nên 620 > 720 hay 310 > 720.

Vậy 310 > 720.

Cách 2: (So sánh hai phân số đó với 0 và áp dụng tính chất bắc cầu).

Ta có: 310 > 0 (phân số có tử số và mẫu số cùng dấu)

Và 720 < 0 (phân số có tử số và mẫu số trái dấu).

Áp dụng tính chất bắc cầu, ta suy ra: 310 > 720.

Vậy 310 > 720.

d) 54 và 2320

Ta có: 2320=2320

Mẫu số chung của hai phân số 54 và 2320 là 20.

Ta thực hiện: 54=5  .  54  .  5=2520 và giữ nguyên phân số 2320.

Vì −25 < −23 nên -2520 < 2320 hay 54 < 2320.

Vậy 54 < 2320.

Xem thêm lời giải SGK Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả