Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau: a) Tìm tứ phân vị của dãy số liệu trên
2.3k
16/06/2023
Bài 2 trang 141 Toán 11 Tập 1: Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau:
a) Tìm tứ phân vị của dãy số liệu trên.
b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:
c) Hãy ước lượng tứ phân vị của mẫu số liệu từ bảng tần số ghép nhóm trên.
Trả lời
a) Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
6; 8; 8; 10; 11; 11; 12; 13; 14; 14; 14; 15; 18; 18; 21; 22; 23; 24; 25; 25.
Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của giá trị thứ 10 và thứ 11 ta được: .
Tứ phân vị thứ nhất là trung bình cộng của giá trị thứ 5 và thứ 6 ta được:
.
Tứ phân vị thứ ba là trung bình cộng của giá trị 15 và 16 ta được:
.
b) Ta có bảng tần số ghép nhóm theo mẫu sau:
Điểm số
|
[6; 10]
|
[11; 15]
|
[16; 20]
|
[21; 25]
|
Số trận
|
4
|
8
|
2
|
6
|
c) Ta có bảng hiểu chỉnh bảng trên như sau:
Điểm số
|
[5,5; 10,5)
|
[10,5; 15,5)
|
[15,5; 20,5)
|
[20,5; 25,5)
|
Số trận
|
4
|
8
|
2
|
6
|
Gọi x1; x2; ...; x20 là lương tháng của nhân viên một văn phòng theo thứ tự không giảm.
Ta có: x1; ...; x4 ∈ [5,5; 10,5), x5; ...; x12 ∈ [10,5; 15,5), x13; x14 ∈ [15,5; 20,5), x15; ...; x20 ∈ [20,5; 25,5).
Khi đó:
- Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của x10 và x11. Vì x10; x11 ∈ [10,5; 15,5) nên Q2 = .
- Tứ phân vị thứ nhất của mẫu số liệu là trung bình cộng của x5 và x6. Vì x5; x6 ∈ [10,5; 15,5) nên .
- Tứ phân vị thứ ba của mẫu số liệu là trung bình cộng của x15 và x16. Vì x15; x16 ∈ [20,5; 25,5) nên .
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 4
Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm
Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
Bài tập cuối chương 5
Bài 1: Tìm hiểu hàm số lượng giác bằng phần mềm GeoGebra
Bài 2: Dùng công thức cấp số nhân để dự báo dân số