Lương tháng của một số nhân viên văn phòng được ghi lại như sau (đơn vị: triệu đồng): a) Tìm tứ phân vị của dãy số liệu trên
399
16/06/2023
Bài 1 trang 140 Toán 11 Tập 1: Lương tháng của một số nhân viên văn phòng được ghi lại như sau (đơn vị: triệu đồng):
a) Tìm tứ phân vị của dãy số liệu trên.
b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:
c) Hãy ước lượng tứ phân vị của số liệu ở bảng tần số ghép nhóm trên.
Trả lời
Sắp xếp mẫu số liệu không giảm ta được:
6,5; 6,7; 6,7; 8,3; 8,4; 8,9; 9,2; 9,6; 9,8; 10,0; 10,0; 10,7; 10,9; 11,1; 11,2; 11,7; 11,9; 12,2; 12,5; 12,7; 13,1; 13,2; 13,6; 13,8.
Cỡ mẫu là n = 24 nên ta có:
Tứ phân vị thứ hai là trung bình cộng của giá trị thứ 12 và 13 ta được: .
Tứ phân vị thứ nhất là trung bình cộng của giá trị thứ 6 và thứ 7 ta được:
.
Tứ phân vị thứ ba là trung bình cộng của giá trị 18 và 19 ta được:
.
b) Ta có bảng tần số ghép nhóm:
Lương tháng
(triệu đồng)
|
[6; 8)
|
[8; 10)
|
[10; 12)
|
[12; 14)
|
Số nhân viên
|
3
|
6
|
8
|
7
|
c) Gọi x1; x2; ...; x24 là lương tháng của nhân viên một văn phòng theo thứ tự không giảm.
Ta có: x1; ...; x3 ∈ [6; 8), x4; ...; x9 ∈ [8; 10), x10; ...; x17 ∈ [10; 12), x18; ...; x24 ∈ [12; 14).
Khi đó:
- Tứ phân vị thứ hai của mẫu số liệu là trung bình cộng của x12 và x13. Vì x12; x13∈ [10; 12) nên Q2 = .
- Tứ phân vị thứ nhất của mẫu số liệu là trung bình cộng của x6 và x7. Vì x6; x7 ∈ [8; 10) nên .
- Tứ phân vị thứ ba của mẫu số liệu là trung bình cộng của x18 và x19. Vì x18; x19 ∈ [12; 14) nên .
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 4
Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm
Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
Bài tập cuối chương 5
Bài 1: Tìm hiểu hàm số lượng giác bằng phần mềm GeoGebra
Bài 2: Dùng công thức cấp số nhân để dự báo dân số