Giải Toán 11 Bài tập cuối chương 4
Câu hỏi trắc nghiệm
A. M ∈ (ABC);
B. C ∈ (ABM);
C. A ∈ (MBC);
D. B ∈ (ACM).
Lời giải:
Đáp án đúng là: A
Ta có: M ∈ AC ⊂ (ABC).
A. Bốn điểm I, J, B, C đồng phẳng;
B. Bốn điểm I, J, A, C đồng phẳng;
C. Bốn điểm I, J, B, D đồng phẳng;
D. Bốn điểm I, J, C, D đồng phẳng.
Lời giải:
Đáp án đúng là: D
A. SM;
B. SN;
C. SB;
D. SC.
Lời giải:
Đáp án đúng là: A
Ta có: S ∈ (SAC) ∩ (SBD)
M ∈ AC ⊂ (SAC)
M ∈ BD ⊂ (SBD)
⇒ M ∈ (SAC) ∩ (SBD)
Vậy (SAC) ∩ (SBD) = SM.
A. EF;
B. DC;
C. AD;
D. AB.
Lời giải:
Đáp án đúng là: C
+) Trong tam giác SAB, có: IJ // AB (IJ là đường trung bình của tam giác)
Ta lại có AB // DC nên IJ // DC
+) Trong tam giác SDC có EF // DC (EF là đường trung bình của tam giác)
+) AD với IJ là hai đường thẳng chéo nhau.
A. AB;
B. AC;
C. BC;
D. SA.
Lời giải:
Đáp án đúng là: A
Ta có: AB // CD
AB ⊂ (SAB)
CD ⊂ (SCD)
S ∈ (SAB) ∩ (SCD)
Suy ra giao tuyến của (SAB) và (SCD) đường thẳng p đi qua S song song với AB và CD.
A. ;
B. ;
C. ;
D. .
Lời giải:
Đáp án đúng là: A
+) Trong mặt phẳng (SAB), từ M kẻ đường thẳng song song với AB cắt SB tại N.
Suy ra giao tuyến của (α) với (SAB) là MN.
+) Trong mặt phẳng (SBC), từ N kẻ đường thẳng song song với BC // AD cắt SC tại P.
Suy ra giao tuyến của (α) với (SBC) là NP.
+) Trong mặt phẳng (SAD), từ điểm M kẻ đường thẳng song song với AD cắt SD tại Q.
Suy ra giao tuyến của (α) với (SAD) là MQ.
Do đó mặt phẳng (MNPQ) là mặt phẳng (α) cần dựng.
Ta có MNPQ là hình vuông có cạnh bằng cạnh hình vuông và bằng .
Diện tích của MNPQ là: (đvdt).
A. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với (Q).
B. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (P) và (Q) thì (P) và (Q) song song với nhau.
D. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.
Lời giải:
Đáp án đúng là: D
Qua một điểm nằm ngoài mặt phắng cho trước ta vẽ được nhiều hơn một đường thẳng song song với mặt phẳng cho trước đó.
A. (MNP) // (BCA);
B. (MNQ) // (A’B’C’);
C. (NQP) // (CAB);
D. (MPQ) // (ABA’).
Lời giải:
Đáp án đúng là: D
Ta có: (MPQ) // (ABA’) vì:
MQ // AB ⊂ (ABA’)
Mà MQ ⊂ (MNQ)
Do đó (MPQ) // (ABA’).
Bài tập tự luận
Lời giải:
Trong mặt phẳng (CDD’C’), từ điểm O kẻ đường thẳng song song với MN cắt CD tại Q và C’D’ tại P. Suy ra mp(OMN) = mp(MNPQ). Khi đó:
+) Giao tuyến của (OMN) với (ABB’A’) là MN.
+) Giao tuyến của (OMN) với (A’B’C’D’) là NP.
+) Giao tuyến của (OMN) với (CC’D’D) là PQ.
+) Giao tuyến của (OMN) với (ABCD) là MQ.
a) Chứng minh rằng MNPQ là hình thang cân.
b) Đặt AM = x, tính diện tích MNPQ theo a và x.
Lời giải:
Do (α) đi qua M và (α) // (SAD) nên (α) cắt các mặt của hình chóp tại các giao tuyến song song với (SAD).
+) Trong mặt phẳng (ABCD), từ điểm M kẻ đường thẳng song song với AD cắt CD tại N. Suy ra giao tuyến của (α) và (ABCD) là MN // AD.
+) Trong mặt phẳng (SCD), từ điểm N kẻ đường thẳng song song với SD cắt SC tại P. Suy ra giao tuyến của (α) và (SCD) là NP // SD.
+) Trong mặt phẳng (SBC), từ điểm P kẻ đường thẳng song song với BC // AD cắt SB tại Q. Suy ra giao tuyến của (α) và (SBC) là PQ // AD.
+) Trong mặt phẳng (SAB), nối M và Q. Suy ra giao tuyến của (α) và (SAB) là MQ // SA.
a) Xét từ giác MNPQ, có: MN // PQ nên MNPQ là hình thang.
Ta có: SA // MQ, MN // AD và nên .
Ta lại có: MN // AD, NP // SD và nên .
Suy ra:
Do đó tứ giác MNPQ là hình thang.
b)
+) Ta có ABCD là hình thoi và MN // AD //BC nên MN = a.
+) Trong tam giác ABC, có PQ // BC nên (định lí Thales)
+) Trong tam giác SAB, có: MQ / SA nên (định lí Thales)
Do đó .
+) Ta lại có:
+) Xét tam giác MHQ vuông tại H, có:
.
Vậy diện tích hình thang cân MNPQ là: .
a) Tứ giác MNCA là hình gì?
b) Chứng minh rằng điểm C luôn luôn chạy trên một đường thẳng cố định.
c) Xác định vị trí của đường thẳng d để độ dài MN nhỏ nhất.
Lời giải:
a) Vì d // (α) nên phép chiếu song song của d trên mặt phẳng (α) là AC và d // AC hay MN // AC.
Mặt khác ta lại có AM // NC
Do đó tứ giác MNCA là hình bình hành.
b) C luôn chạy trên đường thẳng là hình chiếu của đường thẳng b trên mặt phẳng (α) theo phương chiếu (α).
d) Để độ dài MN nhỏ nhất thì đường thẳng d phải vuông góc với a và vuông góc với b.
a) MN // DE;
b) M1N1 // (DEF);
c) (MNN1M1) // (DEF).
Lời giải:
+) Trong mặt phẳng (ABCD) kéo dài DM cắt AB tại O
Vì AO // DC nên (định lí Thales)
Suy ra .
+) Gọi N’ là giao điểm của BF và OE, khi đó: nên N’ trùng N.
+) Trong mặt phẳng (ODE), có: .
Suy ra MN // DE (định lí Thales đảo).
b) Ta có: MM1 // AB // DC nên .
Ta lại có: NN1 // AB // EF nên .
Suy ra
Do đó M1N1 // DF
Mà DF ⊂ (DEF) nên M1N1 // (DEF).
c) Ta có: MN // DE, M1N1 // DF mà DE, DF ⊂ (DEF) và MN, M1N1 ⊂ (MNN1M1); DE và DF cắt nhau tại E nên (MNN1M1) // (DEF).
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 4: Hai mặt phẳng song song
Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm