Câu hỏi:

29/12/2023 122

Phương trình chính tắc của elip có một tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) và đi qua điểm \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là:

A. \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1\);

B. \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\);

C. \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\);

Đáp án chính xác

D. \(\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\). Suy ra \(c = \sqrt 3 \).

Khi đó c2 = 3.

Vì vậy a2 – b2 = 3.

Do đó a2 = b2 + 3.

Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0).

Ta có \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right) \in \left( E \right)\).

Suy ra \(\frac{{{1^2}}}{{{a^2}}} + \frac{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}{{{b^2}}} = 1\)

\( \Leftrightarrow \frac{1}{{{a^2}}} + \frac{3}{{4{b^2}}} = 1\)

4b2 + 3a2 = 4a2b2

4b2 + 3(b2 + 3) = 4b2(b2 + 3)

4b4 + 5b2 – 9 = 0

b2 = 1 hoặc \({b^2} = - \frac{9}{4}\) (vô lí)

b = 1.

Với b = 1, ta có a2 = 12 + 3 = 4.

Vậy phương trình chính tắc của (E): \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\).

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hypebol (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) và đường thẳng ∆: x + y = 3. Tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ bằng giá trị nào sau đây?

Xem đáp án » 29/12/2023 109

Câu 2:

Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(2; –2) là:

Xem đáp án » 29/12/2023 78

Câu 3:

Tọa độ điểm A thuộc parabol (P): y2 = 32x và đường thẳng ∆: 2x – 3y + 4 = 0 là:

Xem đáp án » 29/12/2023 73

Câu 4:

Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:

Xem đáp án » 29/12/2023 66

Câu hỏi mới nhất

Xem thêm »
Xem thêm »