Phân tích các đa thức sau thành nhân tử a) x^2 + 4xy – 21y^2 b) 5x^2 + 6xy + y^2 c) x^2 + 2xy – 15y^2

Câu 34: Phân tích các đa thức sau thành nhân tử

a) x2 + 4xy – 21y2

b) 5x2 + 6xy + y2

c) x2 + 2xy – 15y2

d) (x – y)2 + 4(x – y) – 12

e) x2 – 7xy + 10y2

f) x2yz + 5xyz – 14yz

g) x4 + 4x2 – 5

h) x3 – 19x – 30

i) x3 – 5x2 – 14x

j) x3 – 7x – 6

 

k) x3 – 5x2 – 14

Trả lời

a) x2 + 4xy – 21y2

x2 + 7xy – 3xy – 21y2

= x(x + 7y) – 3y(x + 7y)

= (x + 7y)(x – 3y)

b) 5x2 + 6xy + y2

5x2 + 5xy + xy + y2

= 5x(x + y) + y(x + y)

= (x + y)(5x + y)

c) x2 + 2xy – 15y2

= x2 + 5xy – 3xy – 15y2

= x(x + 5y) – 3y(x + 5y)

= (x + 5y)(x – 3y)

d) (x – y)2 + 4(x – y) – 12

(x – y)2 + 6 (x – y) –  2(x – y) – 12

= (x – y) (x – y + 6)   2 (x – y + 6)

= (x – y + 6)(x – y – 2)

e) x2 – 7xy + 10y2

x2 – 2xy – 5xy + 10y2

= x(x  2y) – 5y(x – 2y)

= (x – 2y)(x – 5y)

 f) x2yz + 5xyz – 14yz

x2yz + 7xyz – 2xyz – 14yz

= xyz (x + 7) – 2yz(x + 7)

= yz(x + 7)(x – 2)

g) x4 + 4x2 – 5

= x4 – x+ 5x2 – 5

= x(x2 – 1) + 5 (x2 – 1)

= (x2 – 1) (x2 + 5)

= (x – 1)(x + 1)(x2 + 5)

h) x3 – 19x – 30

= x3 + 5x2 + 6x – 5x– 25x – 30

= x (x2 + 5x + 6) – 5 (x2 + 5x + 6)

= (x2 + 5x + 6) (x – 5)

= (x – 5)(x2 + 2x + 3x + 6)

= (x – 5)[x(x + 2) + 3(x + 2)]

= (x – 5)(x + 2)(x + 3).

i) x3 – 5x2 – 14x

= x(x2 – 5x – 14)

= x(x2 – 7x + 2x – 14)

= x[x(x – 7) + 2 (x – 7)]

= x(x – 7)(x + 2)

j) x3 – 7x – 6

= x3 + 3x+ 2x – 3x– 9x – 6

= x(x+ 3x + 2) – 3(x+ 3x + 2)

= (x – 3)(x+ 3x + 2)

= (x – 3)(x2 + x + 2x + 2)

= (x – 3)[x(x + 1) + 2(x + 1)]

= (x – 3)(x + 1)(x + 2).

Câu hỏi cùng chủ đề

Xem tất cả