Nếu sinx + cosx = 1/2 thì sinx, cosx bằng
Nếu \(\sin x + \cos x = \frac{1}{2}\) thì sinx, cosx bằng?
Nếu \(\sin x + \cos x = \frac{1}{2}\) thì sinx, cosx bằng?
Điều kiện −1 ≤ sinx; cosx ≤ 1.
Ta có: \(\sin x + \cos x = \frac{1}{2} \Leftrightarrow \cos x = \frac{1}{2} - \sin x\)
Mặt khác: sin2x + cos2x = 1 \( \Leftrightarrow {\sin ^2}x + {\left( {\frac{1}{2} - \sin x} \right)^2} = 1\)
\( \Leftrightarrow {\sin ^2}x + {\sin ^2}x - \sin x + \frac{1}{4} = 1\)
\( \Leftrightarrow 2{\sin ^2}x - \sin x - \frac{3}{4} = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = \frac{{1 + \sqrt 7 }}{4}\\\sin = \frac{{1 - \sqrt 7 }}{4}\end{array} \right.\)
Ta có:
• \(\sin x = \frac{{1 + \sqrt 7 }}{4} \Rightarrow \cos x = \frac{{1 - \sqrt 7 }}{4}\) (TMĐK)
• \(\sin x = \frac{{1 - \sqrt 7 }}{4} \Rightarrow \cos x = \frac{{1 + \sqrt 7 }}{4}\)(TMĐK)
Vậy \(\sin x = \frac{{1 + \sqrt 7 }}{4};\,\,\cos x = \frac{{1 - \sqrt 7 }}{4}\) hoặc \(\sin x = \frac{{1 - \sqrt 7 }}{4};\,\,\cos x = \frac{{1 + \sqrt 7 }}{4}\)