Câu hỏi:
19/01/2024 42
Một cửa hàng làm kệ sách và bàn làm việc. Mỗi kệ sách cần 4 giờ hoàn thiện. Mỗi bàn làm việc cần 3 giờ hoàn thiện. Mỗi tháng cửa hàng có tối đa 240 giờ làm việc. Hãy biểu diễn trên mặt phẳng Oxy mô tả số giờ làm việc trong mỗi tháng của cửa hàng theo số kệ sách hoàn thiện x và số bàn hoàn thiện y.
A.
B.
C.
D.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Thời gian tối đa để hoàn thiện:
+ Kệ sách là: 240 : 4 = 60 giờ.
+ Bàn: 240 : 3 = 80 giờ.
Khi đó ta có:
Hướng dẫn giải
Đáp án đúng là: D
Thời gian tối đa để hoàn thiện:
+ Kệ sách là: 240 : 4 = 60 giờ.
+ Bàn: 240 : 3 = 80 giờ.
Khi đó ta có:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho bất phương trình 2x + y – 6 < 0 (1). Điểm A là giao điểm của parabol (P) y = x2 và đường thẳng y = 5x – 4 . Biết A thuộc miền nghiệm của bất phương trình (1). Có bao nhiêu điểm A thỏa mãn?
Câu 2:
Tất cả các giá trị thực của tham số m để bất phương trình 3x + my − 7 ≥ 0 có miền nghiệm chứa điểm A(\(\sqrt 2 \); 1) là:
Câu 3:
Với giá trị nào của m thì điểm A(1 − m; m) không thuộc miền nghiệm của bất phương trình 2x − 3(y − x) > 4?
Câu 4:
Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:
Nhóm |
Số máy trong mỗi nhóm |
Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm |
|
Loại I |
Loại II |
||
A |
10 |
2 |
2 |
B |
4 |
0 |
2 |
C |
12 |
2 |
4 |
Gọi x, y (x, y ≥ 0) lần lượt là số đơn vị sản phẩm loại I và loại II sản xuất. Các bất phương trình mô tả số đơn vị sản phẩm loại I và loại II sản xuất là: