Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau

Bài 2 trang 65 SBT Toán 10 tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm M(2; 2) và có vectơ chỉ phương u  = (4; 7);

b) d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n = (-5; 3);

c) d đi qua A(-2; -3) và có hệ số góc k = 3,

d) d đi qua hai điểm P(1; 1) và Q(3; 4).

Trả lời

a) Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương u  = (4; 7) nên ta có phương trình tham số của đường thẳng d là:  x=2+4ty=2+7t

Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương u  = (4; 7) nên vectơ pháp tuyến của đường thẳng d là n  (7; –4) phương trình tổng quát của đường thẳng d là: 7(x – 2) – 4(y – 2) = 0  7x – 4y – 6 = 0

b) Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n = (– 5; 3) nên ta có phương trình tổng quát của đường thẳng d là: – 5(x – 0) + 3(y – 1) = 0 ⇔ – 5x + 3y – 3 = 0.

Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n = (–5 ; 3) nên ta có vectơ chỉ của đường thẳng d là u (3; 5) phương trình tham số của đường thẳng d là: x=3ty=1+5t .

c) Đường thẳng d đi qua A(–2; –3) và có hệ số góc k = 3 nên phương trình tổng quát của đường thẳng d là: y = 3(x + 2) – 3 ⇔ 3x – y + 3 = 0.

Khi đó vectơ pháp tuyến của đường thẳng d là n3;1 suy ra vectơ chỉ phương u(1;3) . Vì vậy phương trình tham số của đường thẳng d là: x=2+ty=3+3t .

d) Đường thẳng d đi qua hai điểm P(1; 1) và Q(3; 4) nên vectơ chỉ phương u=PQ  = (2; 3) và có vectơ pháp tuyến là vectơ n  (3; – 2).

Phương trình tham số của đường thẳng d là: x=1+2ty=1+3t .

Phương trình tổng quát của đường thẳng d là: 3(x – 1) – 2(y – 1) = 0   3x – 2y – 1 = 0.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 8

Bài 1: Tọa độ của vectơ

Bài 2: Đường thẳng trong mặt phẳng tọa độ

Bài 3: Đường tròn trong mặt phẳng tọa độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Câu hỏi cùng chủ đề

Xem tất cả