Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a – b) chia hết cho 3
Câu 26: Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a – b) chia hết cho 3.
Câu 26: Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a – b) chia hết cho 3.
Vì a chia 3 dư r nên a = 3p + r
Vì b chia 3 dư r nên b = 3q + r
Xét a – b = (3p + r) – (3q + r)
= 3p + r – 3q – r
= 3p + 3q = 3(p + q)
Vì 3(p + q) ⋮ 3 nên (a – b) ⋮ 3
Vậy (a – b) chia hết cho 3.