Hai chất điểm dao động điều hòa trên hai đường thẳng song song gần kề nhau

Hai chất điểm dao động điều hòa trên hai đường thẳng song song gần kề nhau có vị trí cân bằng nằm trên cùng một đường thẳng vuông góc với quỹ đạo của chúng và có cùng tần số góc \(\omega \), biên độ lần lượt là \({A_1},{A_2}\). Biết \({A_1} + {A_2} = 8\;cm\). Tại một thời điểm vật 1 và vật 2 có li độ và vận tốc lần lượt là \({x_1},{v_1},{x_2},{v_2}\), và thỏa mãn \({x_1}{v_2} + {x_2}\;{v_1} = 8\;c{m^2}/s\). Giá trị nhỏ nhất của \(\omega \)

A. \(4rad/s\).
B. \(2rad/s\).
C. \(1rad/s\).

D. \(0,5rad/s\).

Trả lời

Ta xét:

 \[\frac{8}{\omega } = \frac{{{x_1}{v_2} + {x_2}\;{v_1}}}{\omega } \le \sqrt {(x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}})(x_2^2 + \frac{{v_2^2}}{{{\omega ^2}}})} = {A_1}{A_2} \le {\frac{{({A_1} + {A_2})}}{4}^2} = \frac{{{8^2}}}{4}\;c{m^2}/s \Rightarrow \omega \ge 5\,rad\]

Vậy giá trị nhỏ nhất của tần số góc là \(0,5rad/s\). Chọn đáp án \[{\rm{D}}\]

Câu hỏi cùng chủ đề

Xem tất cả