+ Áp dụng định luật bảo toàn động lượng trước và sau va chạm mềm giữa vật m1 và m2 là:
\[{m_2}{v_2} = \left( {{m_1} + {m_2}} \right)v \Rightarrow v = \frac{{{m_2}{v_2}}}{{\left( {{m_1} + {m_2}} \right)}} = \frac{{0,5.0,2\sqrt {22} }}{{0,5 + 0,5}} = 0,10\sqrt {22} \,m/s\]
+ Lực ma sát tác dụng lên hệ vật sau va chạm là \[{F_{ms}} = \mu ({m_1} + {m_2})g = 0,1.(0,5 + 0,5)10 = 1N\]
+ Tần số góc của con lắc sau va chạm là \[\omega = \sqrt {\frac{k}{{{m_1} + {m_2}}}} = \sqrt {\frac{{20}}{1}} = 2\sqrt 5 rad/s\]
+ Các vị trí cân bằng mới bị dịch một đoạn \[{x_0} = \frac{{Fms}}{k} = \frac{1}{{20}} = 0,05\,m = 5\,cm.\]
+ Độ giảm biên độ sau một phần tư chu kì là \[\Delta A = {x_0} = 5cm\]
+ Biên độ dao động mới: \[{A^2} = x_0^2 + {\left( {\frac{v}{\omega }} \right)^2} = {5^2} + {\left( {\frac{{10\sqrt {22} }}{{2\sqrt 5 }}} \right)^2} \Rightarrow A = 3\sqrt {15} \,cm\]
+ Sau lần nén thứ nhất biên độ dao động còn lại là:
\[{A^'} = A - 2\Delta A = 3\sqrt {15} - 2.5 = 1,62\,cm\]
+ Tốc độ cực đại sau lần nén thứ nhất là
\[{v_{\max 1}} = \omega {A^'} = 2\sqrt 5 .1,62 \approx 7,24\,cm/s = 0,0072\,cm/s\]. Chọn đáp án \[C.\]