Gọi d là đường thẳng đi qua A(1;0) và có hệ số góc m
Đề bài: Gọi d là đường thẳng đi qua A(1;0) và có hệ số góc m. Tìm tất cả giá trị thực của tham số m để d cắt đồ thị hàm số (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị?
Đề bài: Gọi d là đường thẳng đi qua A(1;0) và có hệ số góc m. Tìm tất cả giá trị thực của tham số m để d cắt đồ thị hàm số (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị?
Hướng dẫn giải:
Đường thẳng d có dạng y = m(x – 1) = mx – m.
Phương trình hoành độ giao điểm:
với (x ≠ 1)
⇔ x + 2 = (mx – m)(x – 1)
⇔ mx2 – (2m + 1)x + m – 2 = 0 (1)
Để d cắt (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị ⇔ phương trình (1) có hai nghiệm phân biệt x1 < x2 thỏa mãn x1 < 1 < x2 hay (x1 – 1)(x2 – 1) < 0
⇔ m > 0
Vậy m > 0.