Gọi d là đường thẳng đi qua A(1;0) và có hệ số góc m

Đề bài: Gọi d là đường thẳng đi qua A(1;0) và có hệ số góc m. Tìm tất cả giá trị thực của tham số m để d cắt đồ thị hàm số y=x+2x1  (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị?

Trả lời

Hướng dẫn giải:

Đường thẳng d có dạng y = m(x – 1) = mx – m.

Phương trình hoành độ giao điểm:

x+2x1=mxm với (x ≠ 1)

⇔ x + 2 = (mx – m)(x – 1)

⇔ mx2 – (2m + 1)x + m – 2 = 0 (1)

Để d cắt (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị ⇔ phương trình (1) có hai nghiệm phân biệt x< x2 thỏa mãn x< 1 < xhay (x1 – 1)(x2 – 1) < 0

m0Δ>0x11x21<0m012m+1>0x1x2x1+x2+1<0m0m>112m2m2m+1m+1=3m<0m0m>112m>0

⇔ m > 0

Vậy m > 0.

Câu hỏi cùng chủ đề

Xem tất cả