Giải phương trình sau: 16,7.Pn = 2004.Pn – 5.
Lời giải
Ta có 16,7.Pn = 2004.Pn – 5 (Điều kiện: n ≥ 6).
⇔ 16,7.n! = 2004.(n – 5)!
⇔ 16,7.n.(n – 1)(n – 2)(n – 3)(n – 4)(n – 5)! = 2004.(n – 5)!
⇔ (n – 5)!.[16,7.n.(n – 1)(n – 2)(n – 3)(n – 4) – 2004] = 0
⇔ 16,7.n.(n – 1)(n – 2)(n – 3)(n – 4) – 2004 = 0
⇔ n.(n – 1)(n – 4)(n – 2)(n – 3) – 120 = 0
⇔ n.(n2 – 5n + 4)(n2 – 5n + 6) – 120 = 0
⇔ (n3 – 5n2 + 4n)(n2 – 5n + 6) – 120 = 0
⇔ n5 – 5n4 + 6n3 – 5n4 + 25n3 – 30n2 + 4n3 – 20n2 + 24n – 120 = 0
⇔ n5 – 10n4 + 35n3 – 50n2 + 24n – 120 = 0
⇔ (n5 – 5n4) – (5n4 – 25n3) + (10n3 – 50n2) + (24n – 120) = 0
⇔ n4.(n – 5) – 5n3.(n – 5) + 10n2.(n – 5) + 24(n – 5) = 0
⇔ (n – 5)(n4 – 5n3 + 10n2 + 24) = 0 (1)
Ta có \({n^4} - 5{n^3} + 10{n^2} + 24 = {\left( {{n^2} - \frac{{5n}}{2}} \right)^2} + \frac{{15}}{4}{n^2} + 24\).
Ta có \[\left\{ \begin{array}{l}{\left( {{n^2} - \frac{{5n}}{2}} \right)^2} \ge 0,\,\forall n \ge 6\\\frac{{15}}{4}{n^2} \ge 0,\,\forall n \ge 6\end{array} \right.\]
\( \Rightarrow {\left( {{n^2} - \frac{{5n}}{2}} \right)^2} + \frac{{15}}{4}{n^2} \ge 0,\,\forall n \ge 6\)
\( \Leftrightarrow {\left( {{n^2} - \frac{{5n}}{2}} \right)^2} + \frac{{15}}{4}{n^2} + 24 \ge 24 > 0,\,\forall n \ge 6\).
Khi đó phương trình (1) tương đương với: n – 5 = 0.
⇔ n = 5 (nhận).
Vậy phương trình đã cho có nghiệm là n = 5.