Giải phương trình căn bậc hai 3 cos (x + pi/2) + sin (x - pi/2) = 2sin2x
Giải phương trình \(\sqrt 3 \cos \left( {x + \frac{\pi }{2}} \right) + \sin \left( {x - \frac{\pi }{2}} \right) = 2\sin 2x\).
Giải phương trình \(\sqrt 3 \cos \left( {x + \frac{\pi }{2}} \right) + \sin \left( {x - \frac{\pi }{2}} \right) = 2\sin 2x\).
Ta có \(\cos \left( {x + \frac{\pi }{2}} \right) = - \sin x\) và \(\sin \left( {x - \frac{\pi }{2}} \right) = - \cos x\)
Do đó phương trình \( \Leftrightarrow - \sqrt 3 \sin x - \cos x = 2\sin 2x \Leftrightarrow \sqrt 3 \sin x + \cos x = - 2\sin 2x\)
\( \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} \right) = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} \right) = \sin \left( { - 2x} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{6} = - 2x + k2\pi }\\{x + \frac{\pi }{6} = \pi + 2x + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{18}} + k\frac{{2\pi }}{3}}\\{x = - \frac{{5\pi }}{6} - k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\)
Xét nghiệm .
Vậy phương trình có nghiệm \(x = - \frac{\pi }{{18}} + k\frac{{2\pi }}{3},x = \frac{{7\pi }}{6} + k'2\pi \left( {k,k' \in \mathbb{Z}} \right)\).