Giải phương trình 5sin^2 x + 3sinxcosx – 4cos^2 x = 2

Câu 23: Giải phương trình 5sin2x + 3sinxcosx – 4cos2x = 2.

Trả lời

Ta xét phương trình: 5sin2x + 3sinxcosx – 4cos2x = 2 (1)

Với cosx = 0 ta có (1) trở thành:

5sin2x = 2  sin2x=25(vô lí vì khi cosx = 0 thì cos2x = 0 nên sin2x = 1)

Với cosx ≠ 0, ta chia 2 vế của (1) cho cos2x được:

5.sin2xcos2x+3.sinxcosxcos2x4.cos2xcos2x=2cos2x

 

 5tan2x + 3tanx – 4 = 2(tan2x + 1)

 3tan2x + 3tanx – 6 = 0

 tan2x + tanx – 2 = 0

 (tanx – 1)(tanx + 2) = 0

tanx=1tanx=2

x=π4+kπx=arctan2+kπk (thỏa mãn)

Vậy phương trình đã cho có nghiệm là x=π4+kπ;  x=arctan2+kπ   k

Câu hỏi cùng chủ đề

Xem tất cả