Giải các phương trình sau sin x - căn bậc hai 3 cos x = 0

Giải các phương trình sau:

\(\sin x - \sqrt 3 \cos x = 0\);

Trả lời

\(\sin x - \sqrt 3 \cos x = 0\)

\( \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = 0\)

 \[ \Leftrightarrow \sin x\cos \frac{\pi }{3} - \cos x\sin \frac{\pi }{3} = 0\] (do \[\cos \frac{\pi }{3} = \frac{1}{2}\]\[\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\])

\[ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = 0\]

\[ \Leftrightarrow x - \frac{\pi }{3} = k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow x = \frac{\pi }{3} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Vậy phương trình đã cho có các nghiệm là \[x = \frac{\pi }{3} + k\pi \,\]với k

Câu hỏi cùng chủ đề

Xem tất cả