Giải các bất phương trình bậc hai sau: a) x^2 - 3.x < 4; b) 0 < 2.x^2 - 11.x - 6
Bài 4 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:
Bài 4 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:
a) Ta có: ⟺ x2 – 3x – 4 < 0
Xét tam thức bậc hai f(x) = x2 – 3x – 4 có ∆ = (– 3)2 – 4.1.(– 4) = 25 > 0 nên f(x) có hai nghiệm phân biệt x1 = 4 và x2 = –1.
Ta có: a = 1 > 0 nên f ( x ) < 0 với –1 < x < 4.
Suy ra x2 – 3x – 4 < 0 hay với –1 < x < 4.
Vậy bất phương trình đã cho có tập nghiệm khi S = (–1 ; 4).
b) Ta có: 0 < 2x2 – 11x – 6 ⇔ 2x2 – 11x – 6 > 0
Tam thức bậc hai f( x ) = 2x2 – 11x – 6 có ∆ = (– 11)2 – 4.2.(– 6) = 169 > 0 nên f(x) có hai nghiệm phân biệt x1 = 6 và x2 =
Ta lại có: a = 2 > 0 nên f ( x ) > 0 khi x < hoặc x > 6.
Vậy tập nghiệm của bất phương trình là: S = (– ∞; ) ∪ (6; +∞).
c)
⟺ –2.( 4x2 + 12x + 9 ) + 4x + 30 ≤ 0
⟺ –8x2 – 24x – 18 + 4x + 30 ≤ 0
⟺ –8x2 – 20x + 12 ≤ 0
⟺ –2x2 – 5x + 3 ≤ 0
Tam thức bậc hai f ( x ) = –2x2 – 5x + 3 có ∆ = (– 5)2 – 4.(– 2).3 = 49 nên f(x) có hai nghiệm phân biệt x1 = –3 và x2 =
Ta lại có a = –2 < 0 nên f ( x ) ≤ 0 khi x ≤ –3 hoặc x ≥
Vậy bất phương trình đã cho có tập nghiệm là S = (–∞ ; –3] ∪ [ +∞).
d)
⟺ –4x2 + 20x – 25 ≤ 0
Tam thức bậc hai f ( x ) = –4x2 + 20x – 25 có ∆ = 202 – 4. ( –4 ) . ( – 25 ) = 0 ,
a = –4 < 0 nên f ( x ) ≤ 0 với mọi x ∈ ℝ.
Suy ra –4x2 + 20x – 25 ≤ 0 với mọi x ∈ ℝ.
Vậy với mọi x ∈ ℝ.
e)
⟺ 2x2 – 4x + 2 ≥ 3x2 + 6x + 27
⟺ –x2 – 10x – 25 ≥ 0
⟺ –( x + 5 )2 ≥ 0
⟺ x = –5 ( do –( x + 5 )2 ≤ 0 với mọi x ∈ ℝ)
Vậy khi x = –5
g)
⇔ 2(x2 + 2x + 1) – 9x + 18 < 0
⇔ 2x2 – 5x + 20 < 0
Tam thức bậc hai f ( x ) = 2x2 – 5x + 20 có ∆ = (– 5)2 – 4. 2 . 20 = –135 < 0,
Ta lại có a = 2 > 0 nên f ( x ) > 0 với mọi x ∈ ℝ.
Suy ra 2x2 – 5x + 20 > 0 với mọi x ∈ ℝ.
Vậy không tồn tại x thỏa mãn .
Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Dấu của tam thức bậc hai
Bài 2: Giải bất phương trình bậc hai một ẩn