Câu hỏi:
18/12/2023 91
Giá trị D = tan1°.tan2°…tan890.cot89°…cot2°.cot1° bằng:
Giá trị D = tan1°.tan2°…tan890.cot89°…cot2°.cot1° bằng:
A. 2;
A. 2;
B. 1;
B. 1;
C. 0;
C. 0;
D. 4.
D. 4.
Trả lời:
Đáp án đúng là: B
Ta có: tanα.cotα = 1 nên:
D = tan1°.tan2°…tan890.cot89°…cot2°.cot1°
= (tan1°.cot1°).(tan2°.cot2°)…(tan890.cot89°)
= 1.1…1
= 1.
Đáp án đúng là: B
Ta có: tanα.cotα = 1 nên:
D = tan1°.tan2°…tan890.cot89°…cot2°.cot1°
= (tan1°.cot1°).(tan2°.cot2°)…(tan890.cot89°)
= 1.1…1
= 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 3:
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Câu 4:
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Câu 5:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 6:
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Câu 7:
Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng
Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng
Câu 11:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 12:
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).