Câu hỏi:

18/12/2023 121

Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng


A. 1 cm;



B. \(\sqrt 2 \) cm;



C. 2 cm;


Đáp án chính xác


D. 3 cm.


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(AC = \sqrt {B{C^2} - A{B^2}} = 8\)(cm).

Diện tích tam giác ABC là:\(S = \frac{1}{2}AB.AC = 24\left( {c{m^2}} \right)\)

Nửa chu vi \(p = \frac{{6 + 8 + 10}}{2} = 12\) (cm)

Suy ra \(r = \frac{S}{p} = \frac{{24}}{{12}} = 2\)(cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính diện tích tam giác ABC biết A = 60°; b = 10; c = 20.

Xem đáp án » 18/12/2023 188

Câu 2:

Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:

(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.

Xem đáp án » 18/12/2023 138

Câu 3:

Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.

Xem đáp án » 18/12/2023 125

Câu 4:

Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).

Xem đáp án » 18/12/2023 125

Câu 5:

Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B

Xem đáp án » 18/12/2023 122

Câu 6:

Biểu thức A = cos2α.cot2α + 3cos2α – cot2α + 2sin2 α bằng.

Xem đáp án » 18/12/2023 120

Câu 7:

Trong tam giác ABC, hệ thức nào sau đây sai?

Xem đáp án » 18/12/2023 120

Câu 8:

Cho tam giác ABC a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.

Xem đáp án » 18/12/2023 120

Câu 9:

Tính diện tích tam giác có ba cạnh lần lượt là 5; 12; 13.

Xem đáp án » 18/12/2023 118

Câu 10:

Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.

Xem đáp án » 18/12/2023 113

Câu 11:

Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).

Xem đáp án » 18/12/2023 113

Câu 12:

Cho 0° < α < 90°. Kết luận nào sau đây đúng

Xem đáp án » 18/12/2023 109

Câu 13:

Cho 90° < α < 180°. Kết luận nào sau đây đúng

Xem đáp án » 18/12/2023 109

Câu 14:

Giá trị của biểu thức \(M = \frac{{{{\tan }^2}30^\circ + {{\sin }^2}60^\circ - {{\cos }^2}45^\circ }}{{{{\cot }^2}120^\circ + {{\cos }^2}150^\circ }}\) bằng:

Xem đáp án » 18/12/2023 108

Câu 15:

Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :

Xem đáp án » 18/12/2023 108

Câu hỏi mới nhất

Xem thêm »
Xem thêm »