Dùng tính chất cơ bản của phân thức, chứng minh (x^4 - 1) / (x - 1) = x^3 + x^2
Dùng tính chất cơ bản của phân thức, chứng minh \(\frac{{{x^4} - 1}}{{x - 1}} = {x^3} + {x^2} + x + 1\).
Dùng tính chất cơ bản của phân thức, chứng minh \(\frac{{{x^4} - 1}}{{x - 1}} = {x^3} + {x^2} + x + 1\).
Điều kiện xác định của phân thức \(\frac{{{x^4} - 1}}{{x - 1}}\) là x – 1 ≠ 0 hay x ≠ 1.
Với điều kiện trên, ta có:
\(\frac{{{x^4} - 1}}{{x - 1}} = \frac{{\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)}}{{x - 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{x - 1}}\)
\( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right):\left( {x - 1} \right)}}{{\left( {x - 1} \right):\left( {x - 1} \right)}}\)
\( = \left( {x + 1} \right)\left( {{x^2} + 1} \right) = {x^3} + {x^2} + x + 1\).