Dùng đồ thị hàm số, hãy cho biết a) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị alpha thuộc(-pi/2; pi/2) sao cho sinα = m;
3.1k
09/05/2023
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:
a) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị sao cho sinα = m;
b) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị α ∈ [0; π] sao cho cosα = m;
c) Với mỗi m ∈ ℝ, có bao nhiêu giá trị sao cho tanα = m;
d) Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ [0; π] sao cho cotα = m.
Trả lời
a) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = sinx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ [‒1;1] sẽ có 1 giá trị sao cho sinα = m.
b) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy m ∈ [‒1;1] sẽ có 1 giá trị α ∈ [0; π] sao cho cosα = m.
c) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = tanx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị sao cho tanα = m.
d) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = cotx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị α ∈ [0; π] sao cho cotα = m.
Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Giá trị lượng giác của một góc lượng giác
Bài 3: Các công thức lượng giác
Bài 4: Hàm số lượng giác và đồ thị giác
Bài 5: Phương trình lượng giác
Bài tập cuối chương 1